Area & Perimeter of Trapezium

* A quadrilateral having one pair of parallel sides is called a trapezium.
* A figure surrounded by 4 straight lines is called a quadrilateral.
* A line segment joining two opposite pairs of vertices is called a diagonal. A quadrilateral has two diagonals, but a triangle does not have any diagonal.
* A trapezium is a quadrilateral in which one pair of opposite sides are parallel to each other.

 



               Q.1. Finding Area and Perimeter of a Trapezium)                            
                      The figure shows a trapezium ABCD where                                                   
                               AB = 12.9 cm,                                                   
                                 BC  = 8 cm                                                     
                                  CD  = 4 cm                                                      
                                     AD  = 7 cm.                                                
                                If    DE  = 6 cm, calculate                                  
                                 i) the area                                    
                                  ii) the perimeter of the trapezium


                    Solution:
                      Area of the trapezium  
                             = ½ x (sum of lengths of parallel sides ) x height
                                        = ½ x ( 12.9 + 4 ) x 6
                                          = 50.7 cm²
                  ii) Perimeter of the trapezium = AB  +  BC  + DC  + AD
                                           = 12.9 + 8 + 4 + 7
                                           = 31.9 cm



In trapezium ABCD, AB॥DC but BC∦AD.


A trapezium is not a quadrilateral.

                                     Area of a trapezium 

                                = 1/2 x (sum of lengths of parallel sides ) x height 

                                    = 1/2  (a + b) h

* A quadrilateral with one pair of sides parallel is called a trapezium.
Suppose that AB = a   and   DC = b and that the distance between  AB and CD is h.



The area of triangle ABD  is  1/2ah.
The area of triangle DCB is 1/2bh.
The area of ABCD is
                          1/2ah + 1/2bh  =  1/2(a + b)h.

So the area of a trapezium is equal to one-half the product of the sum of the parallel sides and the distance between them.


Ex. 18

7. ABCD is a trapezium with AB parallel to DC. If the angles A and B are equal, prove that the angles C and D must be equal.





We are given that ABCD is the trapezium and AB parallel to DC.
We are also given that angle A and angle B are equal to angle D.

Q.2.  The figure shows a trapezium ABCD where AB = 5m, BC = 6cm, CD = 13.2 m and AD = 5.5 m. If AE = 4m, find 
i) the area 
ii) the perimeter,
of the trapezium.





   i) Area of the trapezium =  

             = ½ x (sum of lengths of parallel sides ) x height

               = 1/2  X  ( 5 + 13.2 ) X 4
              = 1/2  X  (18.2 ) X   4
             =  36.4  cm²

 ii) Perimeter of the trapezium = AB  +  BC  + DC  + AD

                                                              = (5  +  6  + 13.2 + 5.5 ) m
                                                              =  29.7  m 

Q.3. The figure shows a trapezium PQRS  where PQ = 15 cm and PS = 8 cm. If the area and the perimeter of the trapezium are 104 cm² and 42.9 cm respectively, calculate the length of 

i) RS        ii) QR.




Solution:
i) The height of the trapezium is given by the length of PS  = 8cm.

Area of  the trapezium =  

              ½ x (sum of lengths of parallel sides ) x height = 104 cm²

               1/2 X ( 15 + RS) X 8  = 104
                  4 X ( 15 X RS) = 104
                   15  + RS  = 26
                          RS = 11

Length of RS =  11cm


ii)  Perimeter of the trapezium = PQ  + QR  +  RS  + PS  =  42.9  cm
                                                     15   +  QR  + 11  + 8   = 42.9
                                                         34  + QR  = 42.9
                                                            QR  = 8.9
      

         Length of  QR  = 8.9 cm


Q.4. The figure shows a trapezium PQRS where PQ = 14 m and RS = 10m. If the area and the perimeter of the trapezium are 72 m² and 37.2 m respectively, find the length of 

           i) PS      ii) QR


 

Solution:

  i)   Given here,

                        PQ  =14 m

                         RS  = 10m

                         PS = ?

                         QR = ?  

If        PS = x

We know that,

Area of the trapezium =  

                             72 m² = ½ x (sum of lengths of parallel sides ) x height

                                           = 1/2   X  ( 14 m + 10 m )  X   x 
                                           = 1/2   X  24 m  X    x
                                        x  =  6

                               PS = 6 m  Ans.

   ii) Perimeter =  PQ  + QR  + RS  +  PS
            37.2 m  = 14  +  QR   +  10  +  6
             37.2 m = 30  + QR
                  QR  = 37.2  - 30
                         = 7.2  m   Ans.

Q. 5. In the figure, a semicircle is removed from a trapezium ABCE. COD is the diameter of the semicircle with centre O. If AB = 34 cm, DE = 5 cm, AE = 21 cm and CD = 18 cm, calculate the area of the figure.





Solution:

Area of the figure =  area of the trapezium  - area of the semicircle
                             = 1/2  X (sum of lengths of parallel sides) X  height - 1/2 Ï€r²
                             =  1/2 X  [sum of lengths of parallel sides ]  X  height  -  1/2  Ï€r²
                            =  1/2  X  57  X 21  - 1/2  Ï€ (9)²
                            = 1/2  X   57    X   40.5  Ï€
                            = 598.5  - 40.5  Ï€
                           = 471 cm²  Ans.

6. A figure is made up of a trapezium ABCD  and a semicircle. BOC is the diameter of the semicircle with centre O. If AB = 48 m, CD = 16 m, AD = 20 m and BC = √ 1424 m, find the area of the figure.






Post a Comment

My website

Previous Post Next Post