Area of Parallelogram:









 A quadrilateral having two pairs of parallel sides is called a parallelogram.
In a parallelogram,
* Opposite sides are equal in length
* Opposite angles are equal.

* All parallelograms are rectangles.


A parallelogram is a quadrilateral with the opposite sides parallel and equal to each other.
The angles of a parallelogram need not be equal to 90⁰. All rectangles are parallelograms but all parallelograms are not rectangles.



In parallelogram ABCD, AB = DC,  AD = BC and AB ⏸DC.
AD ॥ BC. None of the angles are equal to 90⁰.


However, notice that ∠DAB = ∠BCD  and ∠ABC = ∠ADC, or the opposite angles of a parallelogram are equal to each other.



Theorem: The opposite sides of a parallelogram are equal; the opposite angles are equal; and a diagonal bisects the parallelogram.

Given : A parallelogram ABCD.
Construction: Join BD.
To prove: i) AD = CB  and  DC = AB.
                ii)   = Ĉ   and   AÄŽC  = CBA
                iii)  Δ ADB   = Δ CBD


Proof: In the triangles ADB and CBD,

DB is common.

a = a₁ (alternate; AD parallel to BC).
b = b₁ (alternate; DC parallel to AB).
Therefore the triangles ADB and CBD are congruent 
In particular, AD = CB;  AB = CD and A = C. 


Area of a parallelogram = base x height
                                           = bh

 Q.1. The figure shows a parallelogram OQRS where PQ = 9 cm and PS = 6 cm. QU is perpendicular to PS and QT is perpendicular to SR. If QU = 8 cm. Calculate the length of QT.







Solution:

    Area of the parallelogram = base x height 

                                             PQ x QT     =  PS x QU
                                                  9 x QT    =  6 x 8
                                                         QT  =    16/3
                                      Length of QT  = 5 1/3 cm






Q.2. The figure shows a parallelogram ABCD where AB = 14 cm and BC = 10 cm. If DE = 8 cm, calculate 
i) the area of the parallelogram
ii) the perimeter of the parallelogram





Solution:


I) Area of the parallelogram = base x height
                                                = 14 x 8
                                               = 112 cm2

ii) Since opposite sides of a parallelogram are equal in length

              AB = DC   and BC  = AD

Perimeter of the parallelogram   = 14 x 2  + 10 x 2


                                                        = 48 cm  Ans.


Ex. 42 B

1. In the parallelogram ABCD, AB = 8 cm and AD = 6 cm. The distance between AB and CD is 3 cm. Find the distance between AD and BC.


Solution:
In the parallelogram ABCD we are given that AB = 8 cm and AD = 6 cm. The distance between AB and CD is EF = 3 cm.

Area of the parallelogram  = AB X EF
                                          = 8 X 3 cm²
                                          = 24 cm²
Let, the distance between AD and BC is GH.
The area of the parallelogram is   = AD  X GH
                                                       = 6 cm  X GH
                               6 cm  X GH = 24 cm²
                  or, GH =  4 cm² Ans.

3. The area of a trapezium is 14 cm². The parallel sides are 3cm and 4 cm long. Find the distance between them.


Solution:
ABCD is the trapezium and AB and CD are the two parallel sides where AB = 4 cm and CD = 3 cm.

The area of the trapezium ABCD is = 1/2 ( AB + CD ) - h

     According to the question,

               1/2 (AB + CD) h = 14 cm²

           or, 1/2 ( 3 +4 ) h cm = 14 cm²

                     or,  7/2 cm  h  = 14 cm²

                                  or,  h  = 14  X   2 cm²/ 7 cm
                                   or,  h = 4 cm Ans.

Q. In the given quadrilateral, the three angles ∠1, ∠2 and ∠3 are  60⁰ , 80⁰ and 100⁰ respectively. Find the fourth angle (∠4).

                ∠1  +  ∠2 +  ∠3   =  60⁰ +  80⁰  +  100⁰  = 240⁰

Now, in the quadrilateral,
                        ∠1  +  ∠2 +  ∠3   = 360⁰
Therefore,      ∠4 = 360⁰ - (sum of three angles)
                             =360⁰ - 240⁰ = 120⁰















More Geometry Class, Worksheets:

Complementary & Supplementary Angles:


Area of Square and Rectangle:


Construction of a Quadrilateral:


Surface Area of Cuboid:


Types of Angles:



23


Post a Comment

My website

Previous Post Next Post